139 research outputs found

    Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits

    Full text link
    The pepino (Solanum muricatum Aiton) is a neglected Andean crop that has elicited an increasing interest from exotic fruit markets. The pepino is highly diverse and, by using appropriate breeding strategies, it has been possible to develop new improved materials. Here we review more than a decade of efforts and advancements made in the genetic improvement of the pepino for several traits, with special emphasis on fruit quality. Different strategies, like the use of a wide diversity of genetic resources, exploitation of genotype × environment interaction, use of clonal hybrids, and introgression of genes from wild species, have facilitated significant developments in enhancing the commercial potential of the pepino, and have allowed the development of new cultivars and breeding materials adapted to new agroclimatic conditions. Agronomic performance of the pepino has been improved by the use of genetic parthenocarpy, selection for resistance to Tomato Mosaic Virus, and by developing hybrids, that manifested heterosis, but also did not have lower quality fruit. Breeding for quality has been focused mostly on the improvement of flavor (sweetness and aroma) and nutritional value (ascorbic acid content; AAC). Despite the limited intraspecific diversity available for sugar content, materials with high soluble solids content (SSC) have been selected. Strategies for further increases of SSC and titratable acidity have been based in the use of wild relatives. The study of variation within the cultigen was also helpful in the selection of hybrid genotypes with improved aroma profiles and high AAC values. As a result of the breeding efforts, several cultivars with improved agronomic performance and fruit quality have been produced. The use of biotechnological tools represents an opportunity to use the extensive genomic information compiled for related species, like tomato or potato, for the future improvement and enhancement of pepino quality. The results obtained in the pepino show that ample opportunities exist for improving the commercial potential of under-utilized fruits by means of breeding based on the exploitation of genetic diversity. © 2010 Elsevier Ltd.Rodríguez Burruezo, A.; Prohens Tomás, J.; Fita, A. (2011). Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits. Food Research International. 44(7):1927-1935. doi:10.1016/j.foodres.2010.12.028S1927193544

    Screening cultivated eggplant and wild relatives for resistance to sweetpotato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae)

    Full text link
    [EN] Whiteflies and spider mites are amongst the most harmful eggplant (Solanum melongena) pests. Considering the need for reduction of chemical applications for whitefly and spider mite control, the exploitation of wild relatives of eggplant as sources of pest resistances represents an important strategy in order to improve cultivated eggplant. The objectives of this study were to evaluate 15 accessions from 11 species of eggplant wild relatives together with sevenS. melongenaaccessions for resistance to sweet potato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae). Resistance to whitefly was evaluated based on number of eggs, nymph, puparium and whitefly adults in a choice bioassay, while for two-spotted spider mite it was based on leaf damage scores in the choice and no-choice bioassays. The results revealed significantly (P < 0.05) different levels of resistance to the two pests among the accessions evaluated. Considering all screening parameters in the whitefly choice bioassay, the highest levels of resistance in wild eggplant relatives were detected inSolanum dasyphyllum(DAS1) andS. pyracanthos(PYR1), although one of the cultivatedS. melongena(MEL2) accessions also displayed similar resistance levels. In addition,S. campylacanthum(CAM8) andS. tomentosumTOM1 were also resistant to whitefly based on numbers of puparium and adult whiteflies. Two accessions ofS. sisymbriifolium(SIS1 and SIS2) exhibited strong resistance to two-spotted spider mite based on the choice and no-choice bioassays. High levels of spider mite resistance were also detected in the no-choice assay inS. dasyphyllum(DAS1) andS. torvum(TOR2) accessions. These resistant accessions can be used in pre-breeding program aiming to breed pest-resistant cultivars in cultivated eggplant. Moreover, to our knowledge, this study represents the first report on potential sources of resistance to whitefly and two-spotted spider mite in wild relatives of eggplant.This work was undertaken as part of the initiative ``Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives'' which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew UK and implemented in partnership with national and international genebanks and plant breeding institutes around the world. For further information, go to the project website: http://www.cwrdiversity.org/.This work has also been funded in part by World Vegetable Center core funds from Republic of China (Taiwan), UK aid from the UK Government, United States Agency for International Development (USAID), Australian Centre for International Agricultural Research (ACIAR), Germany, Thailand, Philippines, Korea, and Japan.Taher, D.; Ramasamy, S.; Prohens Tomás, J.; Rakha, M. (2020). Screening cultivated eggplant and wild relatives for resistance to sweetpotato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae). Euphytica. 216(10):1-13. https://doi.org/10.1007/s10681-020-02692-wS11321610Abudulai M, Shepard BM, Mitchell PL (2001) Parasitism and predation on eggs of Leptoglossus phyllopus (L.) (Hemiptera: Coreidae) in cowpea: Impact of endosulfan sprays. J Agric Urban Entomol 18:105–115Agut B, Gamir J, Jacas JA, Hurtado M, Flors V (2014) Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest Manag Sci 70:1728–1741Agut B, Pastor V, Jaques JA, Flors V (2018) Can plant defence mechanisms provide new approaches for the sustainable control of the two-spotted spider mite Tetranychus urticae? Int J Mol Sci 19:614Aliero AA, Afolayan AJ (2006) Antimicrobial activity of Solanum tomentosum. Afr J Biotechnol 5(4):369–372Asian Vegetable Research and Development Center (1999) AVRDC report. Shanhua, Taiwan, pp 32–36Baldin ELL, Beneduzzi RA (2010) Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. J Pest Sci 83(3):221–227Barchi L, Acquadro A, Alonso D, Aprea G, Bassolino L, Demurtas O, Ferrante P, Gramazio P, Mini P, Portis E, Scaglione D, Toppino L, Vilanova S, Díez MJ, Rotino GL, Lanteri S, Prohens J, Giuliano G (2019) Single Primer Enrichment Technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Front Plant Sci 10:1005Bentz JA, Reeves J, Barbosa P, Francis B (1995) Within-plant variation in nitrogen and sugar content of poinsettia and its effects on the oviposition pattern, survival, and development of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ Entomol 24:271–277Blackmer JL, Byrne DN (1999) Changes in amino acids in Cucumis melo in relation to life-history traits and flight propensity of Bemisia tabaci. Entomol Exp 93:29–40Berlinger MJ, Magal Z, Benzioni A (1983) The importance of pH in food selection by the tobacco whitefly, Bemisia tabaci. Phytoparasitica 11:151–160Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MT, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151(2):925–993Bleeker PM, Mirabellaa R, Diergaardeb PJ, VanDoornb A, Tissierc A, Kantd MR, Prinsb M, de Vosb M, Haringa MA, Schuurinka RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci USA 109(49):20124–20129Bletsos FA, Olympios CM (2008) Rootstocks and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. Eur J Plant Sci Biotechnol 2:62–73Bletsos FA, Thanassoulopoulos CC, Roupakias DG (2003) Effect of grafting on growth, yield and verticillium wilt of eggplant. HortScience 38:183–186Bostanian NJ, Trudeau M, Lasnier J (2003) Management of the two-spotted spider mite, Tetranychus urticae [Acari: Tetranychidae] in eggplant fields. Phytoprotection 84:1–8Bubici G, Cirulli M (2008) Integrated management of Verticillium wilt of tomato. In: Ciancio A, Mukerji KG (eds) Integrated management of diseases caused by fungi, phytoplasma and bacteria. Springer, Berlin, pp 225–242Bukenya ZR, Carasco JF (1994) Biosystematic study of Solanum macrocarpon-S. dasyphyllum complex in Uganda and relations with S. linnaeanum. J East Afr Agric Fores 59:187–204Cardoza YJ, McAuslane HJ, Webb SE (2000) Effect of leaf age and silverleaf symptoms on oviposition site selection and development of Bemisia argentifolii (Homoptera: Aleyrodidae) on zucchini. Environ Entomol 29:220–225Chelliah S, Srinivasan K (1983) Resistance in bhindi, brínjal and tomato to major ínsect and mite pests. In: Proceedings of the national seminar on breeding crop plants for Resistance to pest and disease, Coimbatore, India, Tamil Nadu Agricultural University, 25–27th May, pp 47– 49Choudhary B, Gaur K (2013) The Development and regulation of Bt brinjal in India (Eggplant/Aubergine). ISAAA Brief No. 38. ISAAA, IthacaCulliney TW (2014) Crop losses to arthropods. In: PimenTel D, Peshin R (eds) Integrated pest management. Pesticide Problems. Springer, Dordrecht, pp 201–226Daunay MC, Hazra P (2012) Eggplant. In: Peter KV, Hazra P (eds) Handbook of vegetables. Studium Press, Houston, pp 257–322Daunay MC (2008) Eggplant. In: Prohens J, Nuez F (eds) Vegetables II: handbook of plant breeding. Springer, New York, pp 163–220Del Prado-Lu JL (2015) Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environ Health Prev Med 20(1):53–62Dı ´ez MJ, Nuez F (2008) Tomato. In: Prohens J, Nuez F (eds) Vegetables II: fabaceae, liliaceae, solanaceae, and umbelliferae. Springer, New York, pp 249–323FAOSTAT (2014) Agricultural statistics database. Food and Agriculture Organization, 2014 Rome. http://faostat.fao.orgFAOSTAT (2017) Agricultural statistics database. Food and Agriculture Organization, 2017 Rome. http://faostat.fao.orgFirdaus S, van Heusden A, Hidayati N, Supena ED, Visser RG, Vosman B (2012) Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 187:31–45Frary A, Doganlar S, Daunay MC (2006) Eggplant. In: Kole C (ed) Vegetables II: genome mapping and molecular breeding in plants. Springer, Heidelberg, pp 287–313Frary A, Doganlar S, Daunay MC, Tanksley SD (2003) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor Appl Genet 107:359–370García-Forteaa E, Gramazioa P, Vilanovaa S, Fitaa A, Manginoa G, Villanuevaa G, Arronesa A, Knappb S, Prohensa J, Plaza M (2019) First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci Hortic 246:563–573Ghidiu GM, Hitchner EM, Fburk JE (2006) Goldfleck damage to tomato fruit caused by feeding of Frankliniella occidentalis (Thysanoptera: Thripidae). Florida Entomol 89:279–281Gramazio P, Prohens J, Plazas M, Mangino G, Herraiz FJ, Vilanova S (2017) Development and genetic characterization of advanced backcross materials and an introgression line population of Solanum incanum in a S. melongena background. Front Plant Sci 8:1477Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517Hautea DM, Taylo LD, Masanga APL, Sison MLJ, Narciso JO, Quilloy RB (2016) Field performance of Bt eggplants (Solanum melongena L.) in the Philippines: Cry1ac expression and control of the eggplant fruit and shoot borer (Leucinodes orbonalis Guenée). PLOS ONE 11(6):1–22Helps JC, Paveley ND, van den Boscha F (2017) Identifying circumstances under which high insecticide dose increases or decreases resistance selection. J Theor Biol 428:153–167Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359Im K, Lee JY, Byeon H, Hwang KW, Kang W, Whang WK, Min H (2016) In Vitro antioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food Agr Immunol 27:758–771Jindal V, Dhaliwal GS, Dhawan AK (2008) Mechanisms of resistance in cotton to whitefly Bemisia tabaci (Homoptera: Aleyrodidae): antibiosis. Int J Trop Insect Sci 27:216–222Kashyap V, Vinod Kumar S, Collonnier C, Fusari F, Haicour R, Rotino G, Sihachakr D, Rajam M (2003) Biotechnology of eggplant. Sci Hortic 97:1–25Khan R, Rao GR, Baksh S (1978) Cytogenetics of Solanum integrifolium and its possible use in eggplant breeding. Indian J Genet Plant Breed 38(3):343–347Khanamani M, Fathipour Y, Hajiqanbar H, Sedaratian A (2014) Two-spotted spider mite reared on resistant eggplant affects consumption rate and life table parameters of its predator,Typhlodromus bagdasarjani (Acari: Phytoseiidae). Exp Appl Acarol 63:241–252Kouassi B, Prohens J, Gramazio P, Kouassi AB, Vilanova S, Galán-Ávila A, Herraiz FJ, Kouassi A, Seguí-Simarro JM, Plazas M (2016) Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Sci Hort 213:199–207Leimu R, Riipi M, Stærk D (2005) Food preference and performance of the larvae of a specialist herbivore: variation among and within host-plant populations. Acta Oecologia 28:325–330Liu TX, Stansly PA (1998) Life history of Bemisia argentifolii (Homoptera: Aleyrodidae) on Hibiscus rosasinensis (Malvaceae). Fla Entomol 81:437–445Liu J, Zheng Z, Zhou X, Feng C, Zhuang Y (2015) Improving the resistance of eggplant (Solanum melongena) to verticillium wilt using wild species Solanum linnaeanum. Euphytica 201:463–469McAuslane HJ (1996) Influence of leaf pubescence on ovipositional preference of Bemisia argentifolii (Homoptera: Aleyrodidae) on soybean. Environ Entomol 25(4):834–884Medakker A, Vijayaraghavan V (2007) Successful commercialization of insect-resistant eggplant by a public–private partnership: reaching and benefiting resource-poor farmers. In: Krattiger A, Mahoney RT, Nelsen L, Thomson JA, Bennett AB, Satyanarayana K, Graff GD, Fernandez C, Kowalski SP (eds) Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices. MIHR, OxfordMeyer RS, Karol KG, Little DP, Nee MH, Litt A (2012) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogenet Evol 63:685–701Meyer RS, Whitaker BD, Little DP, Wu SB, Kennelly EJ, Long CL, Litt A (2015) Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry 115:194–206Muigai SG, Bassett MJ, Schuster DJ, Scott JW (2003) Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica 31(1):27–38Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK (2014) Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm. PLoS ONE 9:e95930Oriani MAD, Vendramim JD, Vasconcelos CJ (2011) No-choice ovipositional non preference of Bemisia tabaci (Gennadius) B biotype on tomato genotypes. Sci Agric 68:147–115Oriani MAG, Vendramim JD (2010) Influence of trichomes on attractiveness and ovipositional preference of Bemisia tabaci (Genn.) B biotype (Hemiptera: Aleyrodidae) on tomato genotypes. Neotrop Entomol 39:1002–1007Plazas M, Andújar I, Vilanova S, Gramazio P, Herraiz FJ, Andújar I (2014b) Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front Plant Sci 5:318Plazas M, Vilanova S, Gramazio P, Rodríguez-Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H et al (2016) Interspecific hybridization between eggplant and wild relatives from different genepools. J Am Soc Hort Sci 141:34–44Rakha M, Hanson P, Ramasamy S (2017a) Identification of resistance to Bemisia tabaci (Genn.) in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet Resour Crop Evol 64:247–260. https://doi.org/10.1007/s10722-015-0347-yRakha M, Bouba N, Ramasamy S, Regnard J, Hanson P (2017b) Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet Resour Crop Evol 64:1011–1022. https://doi.org/10.1007/s10722-016-0421-0Ranil RH, Prohens J, Aubriot X, Niran HM, Plazas M, Fonseka RM, Gramazio P, Knapp S (2017) Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genet Resour Crop EvolRotino GL, Perri E, Acciarri N, Sunseri F, Arpaia S (1997) Development of eggplant varietal resistance to insects and diseases via plant breeding. Adv Hort Sci 11:193–201Rotino GL, Sala T, Toppino L (2014) Eggplant. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants vol, 2. Springer, New York, pp 381–409Schalk JM, Stoner AK, Webb RE, Winters HF (1975) Resistance in eggplant, Solanum melongena L. and nontuber bearing Solanum species to carmine spider mite. J Am Soc Hortic Sci 100:479–481Schippers RR (2000) African indigenous vegetables: An overview of the cultivated species. Proceedings of the Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural Cooperation, Chatham, UKSchuster DJ, Stansly PA, Polston JE (1996) Expressions of plant damage by Bemisia. In: Gerling D, Mayer RT (eds) Bemisia (1995) Taxonomy, biology, damage control and management. Intercept Andover, Hants, pp 153–165Sippell DW, Bindra OS, Khalifa H (1987) Resistance to whitefly (Bemisia tabaci) in cotton (Gossypium hirsutum) in the Sudan. Crop Protect 6(3):171–178Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328Smith CM (2005) Plant resistance to arthropods. Molecular and conventional approaches. Springer, DordrechtSnyder JC, Simmons AM, Thacker RR (1998) Attractancy and ovipositional response of adult Bemisia argentifolii (Homoptera: Aleyrodidae) to type IV trichome density on leaves of Lycopersicon hirsutum grown in three day-length regimes. J Entomol Sci 33(3):270–281Soria C, Lopez-Sese AI, Gomez-Guillamon ML (1999) Resistance of Cucumis melo against Bemisia tabaci (Homoptera: Aleyrodidae). Environ Entomol 28:31–835Srinivasan R (2009) Insect and mite pests on eggplant: a field guide for identification and management. AVRDC—The World Vegetable Center, Shanhua, Taiwan. AVRDC Publication No. 09-729. 64 pSyfert M, Castañeda‐Álvarez NP, Khoury C, Särkinen T, Sosa CC, Achicanoy HA, Bernau V, Prohens J, Daunay MC, Knapp S (2016) Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in genebanks and many species at risk of extinction. Am J Bot 103:635–651Taher D, Solberg S, Prohens J, Chou Y, Rakha M, Wu T (2017) World vegetable center eggplant collection: origin, composition, seed dissemination and utilization in breeding. Front Plant Sci 8:1484Taher D, Rakha M, Ramasamy S, Solberg S, Schafleitner R (2019) Sources of resistance for two-spotted Spider Mite (Tetranychus urticae) in Scarlet (Solanum aethiopicum L.) and Gboma (S. macrocarpon L.) Eggplant Germplasms. HortScience 54(2):240–245Toppino L, Barchi L, Lo Scalzo R, Palazzolo E, Francese G, Fibiani M, D’Alessandro A, Papa V, Laudicina VA, Sabatino L et al (2016) Mapping quantitative trait loci affecting biochemical and morphological fruit properties in eggplant (Solanum melongena L.). Front Plant Sci 7:1–16Van Emden H (2002) Mechanisms of resistance: antibiosis, antixenosis, tolerance, nutrition. Encycl Pest Manag 1:483–486Van Lenteren JC, Noldus LPPJ (1990) Whitefly-plant relationships: behavioural and ecological aspects. In: Gerling D (ed) Whiteflies: their bionomics pest status and management. Intercept Ltd, Andover, pp 47–89Vorontsova MS, Knapp S (2012) A new species of Solanum (Solanaceae) from South Africa related to the cultivated eggplant. PhytoKeys 8:1–11Wang R, Wang JD, Che WN, Luo C (2017) First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. J Integr Agr 16(0):60345–6034

    Genetic analysis indicate superiority of perfomance of cape goosberry (Physalis peruviana L.) hybrids

    Full text link
    The use of hybrids as a new type of cape gooseberry (Physalis peruviana L.) cultivars could improve yield in this crop, but little or no information is available on hybrid perfomance. We studied several vegetative characters, yield, fruit weight and fruit shape, soluble solids content (SSC), titratable acidity (TA) and ascorbic acid content (AAC) in three hybrids of cape gooseberry and their parents grown outdoors and in a glasshouse. The highest yields were obtained with hybrids, specially in a glasshouse. Interaction dominance environment for yield was very important; a higher dominance effect was detected in the glasshouse, than that observed outdoors. Quality characters were highly affected by the environment and showed variable results for the different families. For fruit composition traits, the additive and additive environment interactions were most important. Broad-sense heritability for all characters was high to medium (0.48-0.91), indicating that a high response to selection would be expected. Hybrids can improve cape gooseberry yield without impairing fruit quality.Leiva-Brondo, M.; Prohens Tomás, J.; Nuez Viñals, F. (2001). Genetic analysis indicate superiority of perfomance of cape goosberry (Physalis peruviana L.) hybrids. Journal of New Seeds. 3(3):71-84. doi:10.1300/J153v03n03_04718433Abak, K., Güler, H. Y., Sari, N., & Paksoy, M. (1994). EARLINESS AND YIELD OF PHYSALIS (P. IXOCARPA BROT. AND P. PERUVIANA L.) IN GREENHOUSE, LOW TUNNEL AND OPEN FIELD. Acta Horticulturae, (366), 301-306. doi:10.17660/actahortic.1994.366.37Kang, M. S. (1997). Using Genotype-by-Environment Interaction for Crop Cultivar Development. Advances in Agronomy Volume 62, 199-252. doi:10.1016/s0065-2113(08)60569-6Klinac, D. J. (1986). Cape gooseberry (Physalis peruviana) production systems. New Zealand Journal of Experimental Agriculture, 14(4), 425-430. doi:10.1080/03015521.1986.10423060Mather, K., & Jinks, J. L. (1977). Introduction to Biometrical Genetics. doi:10.1007/978-94-009-5787-9Mazer, S. J., & Schick, C. T. (1991). Constancy of population parameters for life history and floral traits in Raphanus sativus L. I. Norms of reaction and the nature of genotype by environment interactions. Heredity, 67(2), 143-156. doi:10.1038/hdy.1991.74Nyquist, W. E., & Baker, R. J. (1991). Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences, 10(3), 235-322. doi:10.1080/07352689109382313Pearcy, R. W. (1990). Sunflecks and Photosynthesis in Plant Canopies. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 421-453. doi:10.1146/annurev.pp.41.060190.002225Péron, J. Y., Demaure, E., & Hannetel, C. (1989). POSSIBILITIES OF TROPICAL SOLANACEAE AND CUCURBITACEAE INTRODUCTION IN FRANCE. Acta Horticulturae, (242), 179-186. doi:10.17660/actahortic.1989.242.24Proctor, F. J. (1990). THE EUROPEAN COMMUNITY MARKET FOR TROPICAL FRUIT AND FACTORS LIMITING GROWTH. Acta Horticulturae, (269), 29-40. doi:10.17660/actahortic.1990.269.

    Screening of eggplant genotypes for resistance to bacterial wilt disease caused by Clavibacter michiganensis subsp. michiganensis

    Full text link
    [EN] Clavibacter michiganensis subsp. michiganensis (Cmm) is one of the phytopathogenic bacteria causing bacterial wilt disease and severe yield losses in tomatoes and other solanaceous vegetables. Although there are some reports on Cmm infections in eggplants (Solanum melongena), there is no information available on the resistance sources and genetic control of the resistance to Cmm in this crop. We performed a search for resistance sources to Cmm in eggplants, in a set of 46 genotypes including landraces, inbred lines and cultivars and some cultivated and wild relatives, as well as an analysis of the genetic control of the resistance. A mixture of different Cmm strains from different genomic groups was used for the screening. Plants were inoculated through the injection of 10 mu L of a Cmm suspension at a concentration of 10(7) cfu/mL in a single point of the stem. The symptoms were recorded at nine weeks after the inoculation with a 0-4 symptoms scale. The differences were observed in the symptoms in the collection evaluated, with the disease severity index of the genotypes ranging from 0.00 to 4.00. While 31 genotypes displayed no symptoms, three cultivated eggplant genotypes were highly susceptible. Reciprocal F1 and F2 generations were obtained from the crosses between the most susceptible genotype (CT30) and a resistant one (CT49). The genetic control of the resistance adjusted well to one dominant and one recessive gene model underlying the resistance to Cmm. These results are important for selection and breeding for resistance to Cmm in eggplants.Supported by the General Directorate of Agricultural Research and Policy, Republic of Turkey, Ministry of Agriculture and Forestry, Project No. BBSS-10-12.Boyaci, HF.; Kabas, A.; Aysan, Y.; Prohens Tomás, J. (2021). Screening of eggplant genotypes for resistance to bacterial wilt disease caused by Clavibacter michiganensis subsp. michiganensis. Plant Protection Science. 57(2):112-121. https://doi.org/10.17221/105/2020-PPS11212157

    Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.)

    Full text link
    [EN] Wall rocket is a wild vegetable with interest to become a crop. However, the information regarding morphological variability in the species is scarce, despite the interest it has received for breeding programs. In addition, evaluating the phytochemical composition can also be useful for developing materials of a high quality. In this study, forty-four populations were evaluated for selected morphoagronomic traits and contents in ascorbic acid (AA), total phenolics (TP), and nitrates (NO3¿). Wall rocket plants had, on average, an intermediate growth habit and a good response to transplant. Moderate variability, mainly for size-related traits, was found, with low to moderate heritability estimates (H2 < 0.35). A Principal Component Analysis revealed that some materials may be selected for differenced traits. On the other hand, wall rocket materials had, on average, high contents in AA (53 mg 100 g¿1) and TP (116 mg CAE 100 g¿1) but also accumulated high levels of NO3¿ (891 mg 100 g¿1). Significant positive correlations were found for AA and TP, which could be exploited for increasing the antioxidant activity and properties of the final product. We provide new information on the variation of wall rocket for traits of morphological and phytochemical interest, which together with other traits, such as the profile of glucosinolates, can be useful for the selection of materials in future breeding programs.C.G. thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). Authors also thank the "Banco de Germoplasma Vegetal-UPM Cesar Gomez Campo" (Madrid, Spain) for transfer of seeds.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.). Agronomy. 10(2):1-14. https://doi.org/10.3390/agronomy10020306S114102Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036Bondonno, C. P., Blekkenhorst, L. C., Liu, A. H., Bondonno, N. P., Ward, N. C., Croft, K. D., & Hodgson, J. M. (2018). Vegetable-derived bioactive nitrate and cardiovascular health. Molecular Aspects of Medicine, 61, 83-91. doi:10.1016/j.mam.2017.08.001Lundberg, J. O., Carlström, M., & Weitzberg, E. (2018). Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metabolism, 28(1), 9-22. doi:10.1016/j.cmet.2018.06.007Herraiz, F. J., Vilanova, S., Andújar, I., Torrent, D., Plazas, M., Gramazio, P., & Prohens, J. (2015). Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica, 206(2), 301-318. doi:10.1007/s10681-015-1454-8BGV-UPM. Coleccioneshttp://www.bancodegermoplasma.upm.es/colecciones.html.Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076Herraiz, F. J., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Rodríguez-Burruezo, A., … Prohens, J. (2015). Phenological growth stages of pepino (Solanum muricatum) according to the BBCH scale. Scientia Horticulturae, 183, 1-7. doi:10.1016/j.scienta.2014.12.008Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Rodríguez, G. R., Moyseenko, J. B., Robbins, M. D., Huarachi Morejón, N., Francis, D. M., & van der Knaap, E. (2010). Tomato Analyzer: A Useful Software Application to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects. Journal of Visualized Experiments, (37). doi:10.3791/1856Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Mousavizadeh, S. J., Hassandokht, M. R., & Kashi, A. (2015). Multivariate analysis of edible Asparagus species in Iran by morphological characters. Euphytica, 206(2), 445-457. doi:10.1007/s10681-015-1508-yD’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806rBennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756tFrancisco, M., Velasco, P., Moreno, D. A., García-Viguera, C., & Cartea, M. E. (2010). Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Research International, 43(5), 1455-1463. doi:10.1016/j.foodres.2010.04.024Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7Tang, L., Luo, W., Tian, S., He, Z., Stoffella, P. J., & Yang, X. (2016). Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage genotypes under field conditions. Scientia Horticulturae, 201, 92-100. doi:10.1016/j.scienta.2016.01.040Bahadoran, Z., Mirmiran, P., Jeddi, S., Azizi, F., Ghasemi, A., & Hadaegh, F. (2016). Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. Journal of Food Composition and Analysis, 51, 93-105. doi:10.1016/j.jfca.2016.06.00

    Potential of wall rocket (Diplotaxis erucoides) as a new crop: influence of the growing conditions on the visual quality of the final product

    Full text link
    [EN] Wild edible plants can be used for developing new crops and diversifying food markets. Wall rocket (Diplotaxis erucoides) is an annual weed with potential as a new crop. The present study aims at evaluating the effects of different growing conditions in the visual quality of this potential new crop. We evaluated eleven accessions of wall rocket, together with commercial rocket accessions (Eruca sativa and D. tenuifolia). Experiments were simultaneously conducted under field and greenhouse systems, and performed during two seasons. Fifteen descriptors related to leaf size, colour and shape were evaluated. Analysis of variance detected significant differences in size and shape among the three species studied, revealing the distinctiveness of wall rocket from the other rocket crops. This distinctiveness may enhance its establishment as a new crop. Comparison between the wall rocket accessions was also performed. There was relatively low morphological diversity among them. By contrast, the growing conditions had a high effect on the visual quality, especially for colour related traits and intensity of lobation, and also in the flowering time. As a consequence, the heritability estimates were low to moderate. The principal component analysis (PCA) clustered accessions according to the growing conditions, thus reinforcing the importance of environment in the morphology of wall rocket. The most promising quality of the leaves was obtained under field conditions, where the bright green colour and intensity of lobation were enhanced. In particular, accession DER006-1 was identified as a good candidate for developing a new cultivar. These results establish a basis for the management of wall rocket as a new crop. At the same time, results regarding the low diversity registered for morphology in the accessions evaluated have important implications for future breeding programmes of wall rocket.C. Guijarro-Real is grateful to the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the predoctoral FPU grant (FPU14-06798). Authors also thank Dr. A. M. Adalid-Martinez, Ms. K. Aguirre, and Ms. S. Benicka for helping in the field tasks.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae. 258:1-9. https://doi.org/10.1016/j.scienta.2019.108778S19258Araj, S.-E., & Wratten, S. D. (2015). Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid. Biological Control, 81, 15-20. doi:10.1016/j.biocontrol.2014.11.003Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153Bell, L., & Wagstaff, C. (2014). Glucosinolates, Myrosinase Hydrolysis Products, and Flavonols Found in Rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 62(20), 4481-4492. doi:10.1021/jf501096xBianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300Buitrago Acevedo, M. F., Groen, T. A., Hecker, C. A., & Skidmore, A. K. (2017). Identifying leaf traits that signal stress in TIR spectra. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 132-145. doi:10.1016/j.isprsjprs.2017.01.014Caruso, G., Parrella, G., Giorgini, M., & Nicoletti, R. (2018). Crop Systems, Quality and Protection of Diplotaxis tenuifolia. Agriculture, 8(4), 55. doi:10.3390/agriculture8040055Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068D’Amelia, V., Aversano, R., Ruggiero, A., Batelli, G., Appelhagen, I., Dinacci, C., … Carputo, D. (2017). Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. Plant, Cell & Environment, 41(5), 1038-1051. doi:10.1111/pce.12966D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020Egea-Gilabert, C., Niñirola, D., Conesa, E., Candela, M. E., & Fernández, J. A. (2013). Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Scientia Horticulturae, 152, 35-43. doi:10.1016/j.scienta.2013.01.018Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi:10.1016/j.wace.2015.08.001Martínez-Laborde, J. B., Pita-Villamil, J. M., & Pérez-García, F. (2007). Short communication. Secondary dormancy in Diplotaxis erucoides: a possible adaptative strategy as an annual weed. Spanish Journal of Agricultural Research, 5(3), 402. doi:10.5424/sjar/2007053-265Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2015). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology, 53(1), 721-729. doi:10.1007/s13197-015-2030-xStagnari, F., Di Mattia, C., Galieni, A., Santarelli, V., D’Egidio, S., Pagnani, G., & Pisante, M. (2018). Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Industrial Crops and Products, 122, 277-289. doi:10.1016/j.indcrop.2018.05.073Stommel, J. R., Whitaker, B. D., Haynes, K. G., & Prohens, J. (2015). Genotype × environment interactions in eggplant for fruit phenolic acid content. Euphytica, 205(3), 823-836. doi:10.1007/s10681-015-1415-2Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737Voss-Fels, K., & Snowdon, R. J. (2015). Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnology Journal, 14(4), 1086-1094. doi:10.1111/pbi.1245

    Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides)

    Full text link
    [EN] Wall rocket (Diplotaxis erucoides) is a wild edible herb traditionally consumed in the Mediterranean regions with a characteristic, pungent flavour. However, little is known about its acceptance as a potential new crop. In the present study, an hedonic test with 98 volunteers was performed in order to evaluate the potential of wall rocket as a new crop. Three products were tested corresponding to microgreens, seedlings and baby-leaves. The volatile constituents were also studied due to their probable influence on acceptance, and compared to Dijon's mustard and wasabi. The degree of acceptance was mainly related to taste and pungency. Microgreens were well accepted, whereas seedlings and baby-leaves were mainly appreciated by individuals that enjoy pungent tastes. The purchase intent was also highly related to the acceptance of taste and pungency. The volatiles profile revealed that wall rocket was rich in allyl isothiocyanate, like mustard and wasabi. This compound may be greatly responsible of the relationship between the acceptance of mustard, wasabi and wall rocket. Microgreens displayed the highest levels of isothiocyanates, although the quantity of product tested by panellists did not probably allow the appreciation of such compounds. In baby-leaves, a significant decrease in isothiocyanates GC area and relative abundances was observed. These results suggest that wall rocket microgreens would be accepted by a significant proportion of the general public since pungency is lowly perceived in the product, despite its high levels of isothiocyanates. By contrast, baby-leaves may become a crop for a cohort of consumers that enjoy pungent flavours.C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for its financial support with a PhD grant (FPU14-06798). Authors also thank Dr. A.M. Adalid and Dr. C.K. Pires for support in the tasting session, and Ms. E. Moreno for assistance with the GC-MS analysis.Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International. 132:1-9. https://doi.org/10.1016/j.foodres.2020.109008S19132Agneta, R., Lelario, F., De Maria, S., Möllers, C., Bufo, S. A., & Rivelli, A. R. (2014). Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 106, 178-187. doi:10.1016/j.phytochem.2014.06.019Angelino, D., Dosz, E. B., Sun, J., Hoeflinger, J. L., Van Tassell, M. L., Chen, P., … Jeffery, E. H. (2015). Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00831Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626-636. doi:10.1016/j.foodchem.2015.08.043Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628Bell, L., Yahya, H. N., Oloyede, O. O., Methven, L., & Wagstaff, C. (2017). Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chemistry, 221, 521-534. doi:10.1016/j.foodchem.2016.11.154Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756tBonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300CARDELLO, A. V., & SCHUTZ, H. G. (2004). RESEARCH NOTE NUMERICAL SCALE-POINT LOCATIONS FOR CONSTRUCTING THE LAM (LABELED AFFECTIVE MAGNITUDE) SCALE. Journal of Sensory Studies, 19(4), 341-346. doi:10.1111/j.1745-459x.2004.tb00152.xCavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003Dinnella, C., Torri, L., Caporale, G., & Monteleone, E. (2014). An exploratory study of sensory attributes and consumer traits underlying liking for and perceptions of freshness for ready to eat mixed salad leaves in Italy. Food Research International, 59, 108-116. doi:10.1016/j.foodres.2014.02.009Evans, R., & Irving, M. (2018). Forager. https://www.forager.org.uk/ (accessed 30th March 2019).Gols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050Guijarro-Real, C., Adalid-Martínez, A. M., Aguirre, K., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Growing Conditions Affect the Phytochemical Composition of Edible Wall Rocket (Diplotaxis erucoides). Agronomy, 9(12), 858. doi:10.3390/agronomy9120858Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., & Fita, A. (2018). Importance of the growing system in the leaf morphology of Diplotaxis erucoides. Acta Horticulturae, (1202), 25-32. doi:10.17660/actahortic.2018.1202.4Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054Huang, L., Li, B.-L., He, C.-X., Zhao, Y.-J., Yang, X.-L., Pang, B., … Shan, Y.-J. (2018). Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. Journal of Functional Foods, 41, 118-126. doi:10.1016/j.jff.2017.12.034Ishida, M., Hara, M., Fukino, N., Kakizaki, T., & Morimitsu, Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science, 64(1), 48-59. doi:10.1270/jsbbs.64.48Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7López-Chillón, M. T., Carazo-Díaz, C., Prieto-Merino, D., Zafrilla, P., Moreno, D. A., & Villaño, D. (2019). Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition, 38(2), 745-752. doi:10.1016/j.clnu.2018.03.006López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031MA, Y., SONG, D., WANG, Z., JIANG, J., JIANG, T., CUI, F., & FAN, X. (2010). EFFECT OF ULTRAHIGH PRESSURE TREATMENT ON VOLATILE COMPOUNDS IN GARLIC. Journal of Food Process Engineering, 34(6), 1915-1930. doi:10.1111/j.1745-4530.2009.00502.xMetsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2017). Headspace−GC–MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating. LWT, 80, 98-105. doi:10.1016/j.lwt.2017.02.010Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020Savio, A. L. V., da Silva, G. N., Camargo, E. A. de, & Salvadori, D. M. F. (2014). Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 762, 40-46. doi:10.1016/j.mrfmmm.2014.02.006SCHUTZ, H. G., & CARDELLO, A. V. (2001). A LABELED AFFECTIVE MAGNITUDE (LAM) SCALE FOR ASSESSING FOOD LIKING/DISLIKING. Journal of Sensory Studies, 16(2), 117-159. doi:10.1111/j.1745-459x.2001.tb00293.xSdiri, S., Rambla, J. L., Besada, C., Granell, A., & Salvador, A. (2017). Changes in the volatile profile of citrus fruit submitted to postharvest degreening treatment. Postharvest Biology and Technology, 133, 48-56. doi:10.1016/j.postharvbio.2017.07.001Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644-7651. doi:10.1021/jf300459

    Turia pepino

    Full text link
    Turia is a new salad pepino cultivar adapted to greenhouse cultivation in a wide range of environments with high yield and improved fruit quality. Its fruit is ovate in shape and has golden yellow skin covered with purple stripes, mild flavour and intense aroma. Turia is the first pepino cultivar tolerant to tomato mosaic virus.Rodríguez Burruezo, A.; Prohens Tomás, J.; Leiva-Brondo, M.; Nuez Viñals, F. (2004). Turia pepino. Canadian Journal of Plant Science. 84(2):603-606. doi:10.4141/P03-108S60360684

    Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group

    Get PDF
    Background: The common or brinjal eggplant (Solanum melongena L.) belongs to the Leptostemonum Clade (the "spiny'' solanums) of the species-rich genus Solanum (Solanaceae). Unlike most of the genus, the eggplant and its relatives are from the Old World; most eggplant wild relatives are from Africa. An informal system for naming eggplant wild relatives largely based on crossing and other biosystematics data has been in use for approximately a decade. This system recognises several forms of two broadly conceived species, S. incanum L. and S. melongena. Recent morphological and molecular work has shown that species-level differences exist between these entities, and a new species-level nomenclature has been identified as necessary for plant breeders and for the maintenance of accurately named germplasm. Methodology/Principal Findings: We examined herbarium specimens from throughout the wild species ranges as part of a larger revision of the spiny solanums of Africa. Based on these morphological and molecular studies, we delimited species in the group to which the common eggplant belongs and constructed identification keys for the group. We also examined the monophyly of the group considered as the eggplant relatives by previous authors. Conclusions/Significance: We recognise ten species in this group: S. aureitomentosum Bitter, S. campylacanthum A. Rich., S. cerasiferum Dunal, S. incanum L., S. insanum L., S. lichtensteinii Willd., S. linnaeanum Hepper & P.-M.L. Jaeger, S. melongena L., S. rigidum Lam. and S. umtuma Voronts. & S. Knapp. We review the history of naming and provide keys and character lists for all species. Ploidy level differences have not been investigated in the eggplant wild relatives; we identify this as a priority for improvement of crop wild relative use in breeding. The application of species-level names to these entities will help focus new collecting efforts for brinjal eggplant improvement and help facilitate information exchange.SK and MSV's work in Solanum taxonomy has been funded by the National Science Foundation, Planetary Biodiversity Inventory (PBI) project "Solanum: A worldwide treatment'' (DEB-0316614). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Knapp, S.; Vorontsova, MS.; Prohens Tomás, J. (2013). Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS ONE. 8:57039-57039. doi:10.1371/journal.pone.005703957039570398Frodin, D. G. (2004). History and concepts of big plant genera. TAXON, 53(3), 753-776. doi:10.2307/4135449Knapp, S., Bohs, L., Nee, M., & Spooner, D. M. (2004). Solanaceae—A Model for Linking Genomics with Biodiversity. Comparative and Functional Genomics, 5(3), 285-291. doi:10.1002/cfg.393Wang, Y., Diehl, A., Wu, F., Vrebalov, J., Giovannoni, J., Siepel, A., & Tanksley, S. D. (2008). Sequencing and Comparative Analysis of a Conserved Syntenic Segment in the Solanaceae. Genetics, 180(1), 391-408. doi:10.1534/genetics.108.087981(2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189-195. doi:10.1038/nature10158(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Bohs L (2005) Major clades in Solanum based on ndhF sequence data. In: Keating RC, Hollowell VC, Croat TB, editors. A Festschrift for William G. D’Arcy: The Legacy of a Taxonomist. Monogr Syst Bot Missouri Bot Gard 104. St. Louis: Missouri Botanical Garden, 27–49.Spooner, D. M., Berg, R. G. van den, Rodríguez, A., Bamberg, J., Hijmans, R. J., & Cabrera, S. I. L. (2004). Wild Potatoes (Solanum section Petota; Solanaceae) of North and Central America. Systematic Botany Monographs, 68, 1. doi:10.2307/25027915OVCHINNIKOVA, A., KRYLOVA, E., GAVRILENKO, T., SMEKALOVA, T., ZHUK, M., KNAPP, S., & SPOONER, D. M. (2011). Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society, 165(2), 107-155. doi:10.1111/j.1095-8339.2010.01107.xTepe, E. J., & Bohs, L. (2011). A Revision of Solanum Section Herpystichum. Systematic Botany, 36(4), 1068-1087. doi:10.1600/036364411x605074Simon, R., Xie, C. H., Clausen, A., Jansky, S. H., Halterman, D., Conner, T., … Spooner, D. (2010). Wild and Cultivated Potato (Solanum sect. Petota) Escaped and Persistent Outside of its Natural Range. Invasive Plant Science and Management, 3(3), 286-293. doi:10.1614/ipsm-d-09-00043.1Moyle, L. C., & Nakazato, T. (2010). Hybrid Incompatibility «Snowballs» Between Solanum Species. Science, 329(5998), 1521-1523. doi:10.1126/science.1193063Cai, X. K., Spooner, D. M., & Jansky, S. H. (2011). A Test of Taxonomic and Biogeographic Predictivity: Resistance toPotato virus Yin Wild Relatives of the Cultivated Potato. Phytopathology, 101(9), 1074-1080. doi:10.1094/phyto-02-11-0060Tanksley, S. D., & McCouch, S. R. (1997). Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science, 277(5329), 1063-1066. doi:10.1126/science.277.5329.1063Harlan, J. R., & Wet, J. M. J. (1971). TOWARD A RATIONAL CLASSIFICATION OF CULTIVATED PLANTS. TAXON, 20(4), 509-517. doi:10.2307/1218252Maxted, N., Ford-Lloyd, B. V., Jury, S., Kell, S., & Scholten, M. (2006). Towards a definition of a crop wild relative. Biodiversity and Conservation, 15(8), 2673-2685. doi:10.1007/s10531-005-5409-6Stern, S., Agra, M. de F., & Bohs, L. (2011). Molecular delimitation of clades within New World species of the «spiny solanums» (Solanum subg. Leptostemonum ). TAXON, 60(5), 1429-1441. doi:10.1002/tax.605018Daunay M-C, Hazra P (2012) Eggplant. In: Peter KV, Hazra P, editors. Handbook of Vegetables. Houston: Studium Press, 257–322.Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. New York: Chronica Botanica.Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Daunay M-C, Lester RN, Ano G (2001) Eggplant. In: Charrier A, Jacquot A, Hamon M, Nicolas D, editors. Tropical plant breeding. Montpellier: Science Publishers, 199–222.Vorontsova MS, Knapp S (2012) Solanum sections Oliganthes, Melongena and Monodolichopus. In: Edmonds JM, Solanaceae, In: Beentje H, editor. Flora of Tropical East Africa. Richmond: RBG Kew, 164–186, 198–215, 220–223.Dunal M-F (1852) Solanaceae, In: DeCandolle AP, editor. Prodromus systematis naturalis regni vegetabilis 13(1): 1–690. Paris: V. Masson.Weese, T. L., & Bohs, L. (2010). Eggplant origins: Out of Africa, into the Orient. TAXON, 59(1), 49-56. doi:10.1002/tax.591006Vorontsova, M. S., & Knapp, S. (2010). Lost Berlin (B) types of Solanum (Solanaceae ) found in Göttingen (GOET). TAXON, 59(5), 1585-1601. doi:10.1002/tax.595024Lester RN, Hazan SMZ (1991) Origin and domestication of the brinjal eggplant, Solanum melongena, from Solanum incanum, in Africa and Asia. In: Hawkes JG, Lester RN, Nee M, Estrada N, editors. Solanaceae III: taxonomy, chemistry and evolution. Kew: Royal Botanic Gardens Kew, 369–387.Mace, E. S., Lester, R. N., & Gebhardt, C. G. (1999). AFLP analysis of genetic relationships among the cultivated eggplant, Solanummelongena L., and wild relatives (Solanaceae). Theoretical and Applied Genetics, 99(3-4), 626-633. doi:10.1007/s001220051277Samuels, J. (2012). Solanum incanum s.l. (Solanaceae): taxonomic relationships between S. incanum, S. campylacanthum, S. panduriforme and S. lichtensteinii. Kew Bulletin, 67(3), 401-411. doi:10.1007/s12225-012-9373-5Deb, D. B. (1989). SOLANUM MELONGENA, S. INCANUM VERSUS S. INSANUM (SOLANACEAE). TAXON, 38(1), 138-139. doi:10.2307/1220916Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10(7), 294-299. doi:10.1016/0169-5347(95)90031-4KNAPP, S. (2008). Species concepts and floras: what are species for? Biological Journal of the Linnean Society, 95(1), 17-25. doi:10.1111/j.1095-8312.2008.01090.xHasan SMZ (1986) Biosystematic study of Solanum melongena L. in Asia and Africa. Unpublished PhD thesis, University of Birmingham.Vorontsova MS, Stern SS, Bohs L, Knapp S (2013) African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc, in press.Whalen MD, Costich DE (1986) Andromonoecy in Solanum. In: D’Arcy WG, editor. Solanaceae: biology and systematics. New York: Colombia University Press, 284–302.Anaso, H. U., & Uzo, J. O. (1990). Relationship and classification among Solanum incanum complex. CYTOLOGIA, 55(1), 1-14. doi:10.1508/cytologia.55.1Manoko MLK (2007) A systematic study of African Solanum L. section Solanum (Solanaceae). PhD thesis, Radboud University, Nijmegen, The Netherlands.Scaldaferro, M., Chiarini, F., Santiñaque, F. F., Bernardello, G., & Moscone, E. A. (2012). Geographical pattern and ploidy levels of the weed Solanum elaeagnifolium (Solanaceae) from Argentina. Genetic Resources and Crop Evolution, 59(8), 1833-1847. doi:10.1007/s10722-012-9807-9Hepper, F. N., & Jaeger, P.-M. L. (1985). The Typification of Six Linnaean Names in Solanum. Kew Bulletin, 40(2), 387. doi:10.2307/4108264Vilanova S, Blasco M, Hurtado M, Muñoz-Falcón JE, Prohens J, et al.. (2010) Development of a linkage map of eggplant based on a S. incanum x S. melongena backcross generation. In: Prohens J, Rodriguez-Burruezo A, editors. Advances in genetics and breeding of capsicum and eggplant. Valencia: Editoral de la Universitat Politècnica de València, 435–439.Spooner, D. M., Peralta, I. E., & Knapp, S. (2005). Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. TAXON, 54(1), 43-61. doi:10.2307/25065301Linnaeus C (1759) Systema naturae (2 vols.). Stockholm: Salvius.Hepper, F. N., & Jaeger, P.-M. L. (1986). Name Changes for Two Old World Solanum Species. Kew Bulletin, 41(2), 433. doi:10.2307/4102956McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, et al.. (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154. Königstein: Koelz Scientific Books.Lebeau, A., Daunay, M.-C., Frary, A., Palloix, A., Wang, J.-F., Dintinger, J., … Prior, P. (2011). Bacterial Wilt Resistance in Tomato, Pepper, and Eggplant: Genetic Resources Respond to Diverse Strains in theRalstonia solanacearumSpecies Complex. Phytopathology, 101(1), 154-165. doi:10.1094/phyto-02-10-0048Miller P (1768) The gardener’s dictionary, 8th edition. Published for the author.Szymkowiak, E. J., & Sussex, I. M. (1992). The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. The Plant Cell, 4(9), 1089-1100. doi:10.1105/tpc.4.9.1089Wang, J.-X., Gao, T.-G., & Knapp, S. (2008). Ancient Chinese Literature Reveals Pathways of Eggplant Domestication. Annals of Botany, 102(6), 891-897. doi:10.1093/aob/mcn179Hurtado, M., Vilanova, S., Plazas, M., Gramazio, P., Fonseka, H. H., Fonseka, R., & Prohens, J. (2012). Diversity and Relationships of Eggplants from Three Geographically Distant Secondary Centers of Diversity. PLoS ONE, 7(7), e41748. doi:10.1371/journal.pone.0041748Brickell CD, Alexander C, David JC, Hetterscheid WLA, Leslie AC, et al.. (2009) International Code of Nomenclature for Cultivated Plants (ICNCP or Cultivated Plant Code) incorporating the Rules and Recommendations for naming plants in cultivation. Eighth Edition. Adopted by the International Union of Biological Sciences International Commission for the Nomenclature of Cultivated Plants. Regnum Vegetabile 151; Scripta Horticulturae 10. Leuven: International Society for Horticultural Science.KNAPP, S., & JARVIS, C. E. (1990). The typification of the names of New World Solanum species described by Linnaeus. Botanical Journal of the Linnean Society, 104(4), 325-367. doi:10.1111/j.1095-8339.1990.tb02227.xJarvis CE (2007) Order out of chaos: Linnaean plant names and their types. London: Linnean Society and Natural History Museum

    Detection of honey adulteration by conventional and real-time PCR

    Full text link
    [EN] This work applies both conventional and real-time PCR DNA amplification techniques for detecting and quantifying rice molasses in honey. Different levels of adulteration were simulated (1, 2, 5, 10, 20, 50%) using commercial rice molasses. Among the different specific genes of rice tested by PCR, the PLD1 primer was the most effective. This allowed the visualization in agarose gel of this type of adulterant up to 5-20%. Moreover, by means of real-time PCR it was possible to distinguish the different levels of rice DNA, and therefore the percentage of adulteration (1-50%). A standard curve built with the DNA serial dilutions of rice genomic DNA concentrations showed that the quantification level was between 2-5%. These results offer compelling evidence that DNA techniques could be useful not only for the detection of adulterations of honey with rice molasses but also for the quantification of levels lower than those of conventional techniques.This study is part of part of the projects funded by the "Agencia Estatal de Investigacion" (AGL2016-77702-R) and by the "Generalitat Valenciana" (AICO/2015/104) of Spain, for which the authors are grateful.Sobrino-Gregorio, L.; Vilanova Navarro, S.; Prohens Tomás, J.; Escriche Roberto, MI. (2019). Detection of honey adulteration by conventional and real-time PCR. Food Control. 95:57-62. https://doi.org/10.1016/j.foodcont.2018.07.037S57629
    corecore